
d02 – Ordinary Differential Equations d02ejc

nag ode ivp bdf gen (d02ejc)

1. Purpose

nag ode ivp bdf gen (d02ejc) integrates a stiff system of first-order ordinary differential equations
over an interval with suitable initial conditions, using a variable-order, variable-step method
implementing the Backward Differentiation Formulae (BDF), until a user-specified function, if
supplied, of the solution is zero, and returns the solution at points specified by the user, if desired.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_bdf_gen(Integer neq,
void (*fcn)(Integer neq, double x, double y[], double f[],

Nag_User *comm),
void (*pederv)(Integer neq, double x, double y[],

double pw[], Nag_User *comm),
double *x, double y[], double xend, double tol,
Nag_ErrorControl err_c,
void (*output)(Integer neq, double *xsol, double y[],

Nag_User *comm),
double (*g)(Integer neq, double x, double y[], Nag_User *comm),
Nag_User *comm, NagError *fail)

3. Description

The function advances the solution of a system of ordinary differential equations

y′
i = fi(x, y1, y2, . . . , yneq), i = 1, 2, . . . ,neq,

from x = x to x = xend using a variable-order, variable-step method implementing the BDF. The
system is defined by a function fcn supplied by the user, which evaluates fi in terms of x and
y1, y2, . . . , yneq (see Section 4). The initial values of y1, y2, . . . , yneq must be given at x = x.

The solution is returned via the user-supplied function output at points specified by the user, if
desired: this solution is obtained by C1 interpolation on solution values produced by the method.
As the integration proceeds a check can be made on the user-specified function g(x, y) to determine
an interval where it changes sign. The position of this sign change is then determined accurately. It
is assumed that g(x, y) is a continuous function of the variables, so that a solution of g(x, y) = 0.0
can be determined by searching for a change in sign in g(x, y). The accuracy of the integration, the
interpolation and, indirectly, of the determination of the position where g(x, y) = 0.0, is controlled
by the parameters tol and err c. The Jacobian of the system y′ = f(x, y) may be supplied in
function pederv, if it is available.

For a description of BDF and their practical implementation see Hall and Watt (1976).

4. Parameters

neq
Input: the number of differential equations.
Constraint: neq ≥ 1.

fcn
The function fcn, supplied by the user, must evaluate the first derivatives y′

i (i.e., the functions
fi) for given values of their arguments x, y1, y2, . . . , yneq.
The specification of fcn is:

[NP3275/5/pdf] 3.d02ejc.1

nag ode ivp bdf gen NAG C Library Manual

void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)

neq
Input: the number of differential equations.

x
Input: the value of the independent variable x.

y[neq]
Input: y[i − 1] holds the value of the variable yi, for i = 1, 2, . . . , neq.

f[neq]
Output: f [i − 1] must contain the value of fi, for i = 1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

pederv
The function pederv must evaluate the Jacobian of the system (that is, the partial derivatives
∂fi
∂yj

) for given values of the variables x, y1, y2, . . . , yneq.

The specification of pederv is:

void pederv(Integer neq, double x, double y[], double pw[], Nag_User *comm)

neq
Input: the number of differential equations.

x
Input: the value of the independent variable x.

y[neq]
Input: y[i − 1] holds the value of the variable yi, for i = 1, 2, . . . , neq.

pw[neq∗neq]
Output: pw[(i − 1) ∗ neq + j − 1] must contain the value of ∂fi

∂yj
, for i, j =

1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

If the user does not wish to supply the Jacobian, the actual argument pederv must be the
NAG defined null function pointer NULLFN.

x
Input: the value of the independent variable x.
Constraint: x �= xend.
Output: if g is supplied by the user, x contains the point where g(x, y) = 0.0, unless
g(x, y) �= 0.0 anywhere on the range x to xend, in which case, x will contain xend. If g
is not supplied by the user x contains xend, unless an error has occurred, when it contains
the value of x at the error.

y[neq]
Input: y[i − 1] holds the value of the variable yi, for i = 1, 2, . . . ,neq.

3.d02ejc.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02ejc

Output: the computed values of the solution at the final point x = x.

xend
Input: the final value of the independent variable. If xend < x, integration proceeds in the
negative direction.
Constraint: xend �= x.

tol
Input: a positive tolerance for controlling the error in the integration. Hence tol affects the
determination of the position where g(x, y) = 0.0, if g is supplied.
nag ode ivp bdf gen has been designed so that, for most problems, a reduction in tol leads
to an approximately proportional reduction in the error in the solution. However, the actual
relation between tol and the accuracy achieved cannot be guaranteed. The user is strongly
recommended to call nag ode ivp bdf gen with more than one value for tol and to compare
the results obtained to estimate their accuracy. In the absence of any prior knowledge, the
user might compare the results obtained by calling nag ode ivp bdf gen with tol = 10−p and
tol = 10−p−1 if p correct decimal digits are required in the solution.
Constraint: tol > 0.0.

err c
Input: the type of error control. At each step in the numerical solution an estimate of the
local error, est, is made. For the current step to be accepted the following condition must be
satisfied:

est =

√√√√ 1
neq

neq∑
i=1

(ei/(τr × |yi| + τa))2 ≤ 1.0

where τr and τa are defined by
err c τr τa

Nag Relative tol ε
Nag Absolute 0.0 tol
Nag Mixed tol tol

where ε is a small machine-dependent number and ei is an estimate of the local error at yi,
computed internally. If the appropriate condition is not satisfied, the step size is reduced and
the solution is recomputed on the current step. If the user wishes to measure the error in
the computed solution in terms of the number of correct decimal places, then err c should
be set to Nag Absolute on entry, whereas if the error requirement is in terms of the number
of correct significant digits, then err c should be set to Nag Relative. If the user prefers a
mixed error test, then err c should be set to Nag Mixed. The recommended value for err c
is Nag Relative.
Constraint: err c = Nag Absolute, Nag Mixed or Nag Relative.

output
The function output permits access to intermediate values of the computed solution (for
example to print or plot them), at successive user-specified points. It is initially called by
nag ode ivp bdf gen with xsol = x (the initial value of x). The user must reset xsol to the next
point (between the current xsol and xend) where output is to be called, and so on at each call
to output. If, after a call to output, the reset point xsol is beyond xend, nag ode ivp bdf gen
will integrate to xend with no further calls to output; if a call to output is required at the
point xsol = xend, then xsol must be given precisely the value xend.

[NP3275/5/pdf] 3.d02ejc.3

nag ode ivp bdf gen NAG C Library Manual

void output(Integer neq, double *xsol, double y[], Nag_User *comm)

neq
Input: the number of differential equations.

xsol
Input: the value of the independent variable x.
Output: the user must set xsol to the next value of x at which output is to be
called.

y[neq]
Input: y[i − 1] holds the value of the variable yi, for i = 1, 2, . . . , neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

If the user does not wish to access intermediate output, the actual argument output must be
the NAG defined null function pointer NULLFN.

g
The function g must evaluate g(x, y) for specified values x, y. It specifies the function g for
which the first position x where g(x, y) = 0 is to be found.
The specification of g is:

double g(Integer neq, double x, double y[], Nag_User *comm)

neq
Input: the number of differential equations.

x
Input: the value of the independent variable x.

y[neq]
Input: y[i − 1] holds the value of the variable yi, for i = 1, 2, . . . , neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

If the user does not require the root finding option, the actual argument g must be the NAG
defined null double function pointer NULLDFN.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined functions fcn(), pederv(), output() and g().
An object of the required type should be declared by the user, e.g. a structure, and its
address assigned to the pointer p by means of a cast to Pointer in the calling program,
e.g. comm.p = (Pointer)&s. The type pointer will be void * with a C compiler that
defines void * and char * otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

3.d02ejc.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02ejc

5. Error Indications and Warnings

NE INT ARG LT
On entry, neq must not be less than 1: neq = 〈value〉.

NE REAL ARG LE
On entry, tol must not be less than or equal to 0.0: tol = 〈value〉.

NE 2 REAL ARG EQ
On entry x = 〈value〉 while xend = 〈value〉. These parameters must satisfy x �= xend.

NE BAD PARAM
On entry parameter err c had an illegal value.

NE TOL TOO SMALL
The value of tol, 〈value〉, is too small for the function to take an initial step.

NE XSOL NOT RESET
On call 〈value〉 to the supplied print function xsol was not reset.

NE XSOL SET WRONG
xsol was set to a value behind x in the direction of integration by the first call to the supplied
print function.
The integration range is [〈value〉, 〈value〉], xsol = 〈value〉.

NE XSOL INCONSIST
On call 〈value〉 to the supplied print function xsol was set to a value behind the previous
value of xsol in the direction of integration.
Previous xsol = 〈value〉, xend = 〈value〉, new xsol = 〈value〉.

NE NO SIGN CHANGE
No change in sign of the function g(x, y) was detected in the integration range.

NE TOL PROGRESS
The value of tol, 〈value〉, is too small for the function to make any further progress across
the integration range. Current value of x = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments

If more than one root is required, then to determine the second and later roots nag ode ivp bdf gen
may be called again starting a short distance past the previously determined roots.
If it is easy to code, the user should supply the function pederv. However, it is important to be
aware that if pederv is coded incorrectly, a very inefficient integration may result and possibly even
a failure to complete the integration (fail.code = NE TOL PROGRESS).

6.1. Accuracy

The accuracy of the computation of the solution vector y may be controlled by varying the local
error tolerance tol. In general, a decrease in local error tolerance should lead to an increase in
accuracy. Users are advised to choose err c = Nag Relative unless they have a good reason for a
different choice. It is particularly appropriate if the solution decays.
If the problem is a root-finding one, then the accuracy of the root determined will depend strongly
on ∂g

∂x
and ∂g

∂yi
, for i = 1, 2, . . . ,neq. Large values for these quantities may imply large errors in

the root.

6.2. References

Hall G and Watt J M (ed) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford.

[NP3275/5/pdf] 3.d02ejc.5

nag ode ivp bdf gen NAG C Library Manual

7. See Also

nag ode ivp adams gen (d02cjc)
nag ode ivp adams roots (d02qfc)
nag ode ivp rk range (d02pcc)

8. Example

We illustrate the solution of five different problems. In each case the differential system is the
well-known stiff Robertson problem.

y′
1 = −0.04y1 + 104y2y3

y′
2 = 0.04y1 − 104y2y3 − 3 × 107y2

2

y′
3 = 3 × 107y2

2

with initial conditions y1 = 1.0, y2 = y3 = 0.0 at x = 0.0. We solve each of the following problems
with local error tolerances 1.0e−3 and 1.0e−4.
(i) To integrate to x = 10.0 producing output at intervals of 2.0 until a point is encountered

where y1 = 0.9. The Jacobian is calculated numerically.
(ii) As (i) but with the Jacobian calculated analytically.
(iii) As (i) but with no intermediate output.
(iv) As (i) but with no root-finding termination condition.
(v) Integrating the equations as in (i) but with no intermediate output and no root-finding

termination condition.

8.1. Program Text

/* nag_ode_ivp_bdf_gen(d02ejc) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm);
#else
static void fcn();
#endif

#ifdef NAG_PROTO
static void pederv(Integer neq, double x, double y[], double pw[],

Nag_User *comm);
#else
static void pederv();
#endif

#ifdef NAG_PROTO
static double g(Integer neq, double x, double y[], Nag_User *comm);
#else
static double g();
#endif

#ifdef NAG_PROTO
static void out(Integer neq, double *tsol, double y[], Nag_User *comm);
#else
static void out();
#endif

3.d02ejc.6 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02ejc

struct user
{
double xend, h;
Integer k;

};

#define NEQ 3
main()
{
Integer neq;
Integer i, j;
double x, y[3];
double tol;
Nag_User comm;
struct user s;

Vprintf("d02ejc Example Program Results\n");

/* For communication with function out()
* assign address of user defined structure
* to comm.p.
*/

comm.p = (Pointer)&s;

neq = NEQ;
s.xend = 10.0;
Vprintf("\nCase 1: calculating Jacobian internally\n");
Vprintf(" intermediate output, root-finding\n\n");

for (j=3; j<=4; ++j)
{
tol = pow(10.0, -(double)j);
Vprintf("\n Calculation with tol = %3.1e\n", tol);
x = 0.0;
y[0] = 1.0;
y[1] = 0.0;
y[2] = 0.0;
s.k = 4;
s.h = (s.xend-x) /(double)(s.k+1);
Vprintf(" X Y(1) Y(2) Y(3)\n");
d02ejc(neq, fcn, NULLFN, &x, y, s.xend, tol, Nag_Relative,

out, g, &comm, NAGERR_DEFAULT);
Vprintf(" Root of Y(1)-0.9 at %5.3f\n", x);
Vprintf(" Solution is ");
for (i=0; i<3; ++i)
Vprintf("%7.5f ", y[i]);

Vprintf("\n");
}

Vprintf("\nCase 2: calculating Jacobian by pederv\n");
Vprintf(" intermediate output, root-finding\n\n");

for (j=3; j<=4; ++j)
{
tol = pow(10.0, -(double)j);
Vprintf("\n Calculation with tol = %3.1e\n", tol);
x = 0.0;
y[0] = 1.0;
y[1] = 0.0;
y[2] = 0.0;
s.k = 4;
s.h = (s.xend-x) /(double)(s.k+1);
Vprintf(" X Y(1) Y(2) Y(3)\n");
d02ejc(neq, fcn, pederv, &x, y, s.xend, tol, Nag_Relative,

out, g, &comm, NAGERR_DEFAULT);
Vprintf(" Root of Y(1)-0.9 at %5.3f\n", x);
Vprintf(" Solution is ");
for (i=0; i<3; ++i)
Vprintf("%7.5f ", y[i]);

Vprintf("\n");
}

[NP3275/5/pdf] 3.d02ejc.7

nag ode ivp bdf gen NAG C Library Manual

Vprintf("\nCase 3: calculating Jacobian internally\n");
Vprintf(" no intermediate output, root-finding\n\n");
for (j=3; j<=4; ++j)

{
tol = pow(10.0, -(double)j);
Vprintf("\n Calculation with tol = %3.1e\n", tol);
x = 0.0;
y[0] = 1.0;
y[1] = 0.0;
y[2] = 0.0;

d02ejc(neq, fcn, NULLFN, &x, y, s.xend, tol, Nag_Relative,
NULLFN, g, &comm, NAGERR_DEFAULT);

Vprintf(" Root of Y(1)-0.9 at %5.3f\n", x);
Vprintf(" Solution is ");
for (i=0; i<3; ++i)
Vprintf("%7.5f ", y[i]);

Vprintf("\n");
}

Vprintf("\nCase 4: calculating Jacobian internally\n");
Vprintf(" intermediate output, no root-finding\n\n");

for (j=3; j<=4; ++j)
{
tol = pow(10.0, -(double)j);
Vprintf("\n Calculation with tol = %3.1e\n", tol);
x = 0.0;
y[0] = 1.0;
y[1] = 0.0;
y[2] = 0.0;
s.k = 4;
s.h = (s.xend-x) /(double)(s.k+1);
Vprintf(" X Y(1) Y(2) Y(3)\n");
d02ejc(neq, fcn, NULLFN, &x, y, s.xend, tol, Nag_Relative,

out, NULLDFN, &comm, NAGERR_DEFAULT);
Vprintf("%8.2f", x);
for (i=0; i<3; ++i)
Vprintf("%13.5f", y[i]);

Vprintf("\n");
}

Vprintf("\nCase 5: calculating Jacobian internally\n");
Vprintf(" no intermediate output, no root-finding (integrate to xend)\n\n");

for (j=3; j<=4; ++j)
{
tol = pow(10.0, -(double)j);
Vprintf("\n Calculation with tol = %3.1e\n", tol);
x = 0.0;
y[0] = 1.0;
y[1] = 0.0;
y[2] = 0.0;
Vprintf(" X Y(1) Y(2) Y(3)\n");
Vprintf("%8.2f", x);
for (i=0; i<3; ++i)
Vprintf("%13.5f", y[i]);

Vprintf("\n");
d02ejc(neq, fcn, NULLFN, &x, y, s.xend, tol, Nag_Relative,

NULLFN, NULLDFN, &comm, NAGERR_DEFAULT);
Vprintf("%8.2f", x);
for (i=0; i<3; ++i)
Vprintf("%13.5f", y[i]);

Vprintf("\n");
}

exit(EXIT_SUCCESS);
}

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)

3.d02ejc.8 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02ejc

#else
static void fcn(neq, x, y, f, comm)
Integer neq;
double x, y[], f[];
Nag_User *comm;

#endif
{
f[0] = y[0] * -0.04 + y[1] * 1e4 * y[2];
f[1] = y[0] * 0.04 - y[1] * 1e4 * y[2] - y[1] * 3e7 * y[1];
f[2] = y[1] * 3e7 * y[1];

}

#ifdef NAG_PROTO
static void pederv(Integer neq, double x, double y[], double pw[],

Nag_User *comm)
#else

static void pederv(neq, x, y, pw, comm)
Integer neq;
double x, y[], pw[];
Nag_User *comm;

#endif
{

#define PW(I,J) pw[((I)-1)*neq + (J)-1]

PW(1,1) = -0.04;
PW(1,2) = y[2] * 1e4;
PW(1,3) = y[1] * 1e4;
PW(2,1) = 0.04;
PW(2,2) = y[2] * -1e4 - y[1] * 6e7;
PW(2,3) = y[1] * -1e4;
PW(3,1) = 0.0;
PW(3,2) = y[1] * 6e7;
PW(3,3) = 0.0;

}

#ifdef NAG_PROTO
static double g(Integer neq, double x, double y[], Nag_User *comm)
#else

static double g(neq, x, y, comm)
Integer neq;
double x, y[];
Nag_User *comm;

#endif
{
return y[0]-0.9;

}

#ifdef NAG_PROTO
static void out(Integer neq, double *xsol, double y[], Nag_User *comm)
#else

static void out(neq, xsol, y, comm)
Integer neq;
double *xsol, y[];
Nag_User *comm;

#endif
{
Integer j;
struct user *s = (struct user *)comm->p;

Vprintf("%8.2f", *xsol);
for (j=0; j<3; ++j)

Vprintf("%13.5f", y[j]);
Vprintf ("\n");

*xsol = s->xend - (double)s->k * s->h;
s->k--;

}

[NP3275/5/pdf] 3.d02ejc.9

nag ode ivp bdf gen NAG C Library Manual

8.2. Program Data

None.

8.3. Program Results

d02ejc Example Program Results

Case 1: calculating Jacobian internally
intermediate output, root-finding

Calculation with tol = 1.0e-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with tol = 1.0e-04
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 2: calculating Jacobian by pederv
intermediate output, root-finding

Calculation with tol = 1.0e-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with tol = 1.0e-04
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 3: calculating Jacobian internally
no intermediate output, root-finding

Calculation with tol = 1.0e-03
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with tol = 1.0e-04
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 4: calculating Jacobian internally
intermediate output, no root-finding

Calculation with tol = 1.0e-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09446
6.00 0.87928 0.00002 0.12070
8.00 0.85859 0.00002 0.14139

3.d02ejc.10 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02ejc

10.00 0.84143 0.00002 0.15855
10.00 0.84143 0.00002 0.15855

Calculation with tol = 1.0e-04
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
6.00 0.87926 0.00002 0.12072
8.00 0.85854 0.00002 0.14144

10.00 0.84136 0.00002 0.15862
10.00 0.84136 0.00002 0.15862

Case 5: calculating Jacobian internally
no intermediate output, no root-finding (integrate to xend)

Calculation with tol = 1.0e-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000

10.00 0.84143 0.00002 0.15855

Calculation with tol = 1.0e-04
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000

10.00 0.84136 0.00002 0.15862

[NP3275/5/pdf] 3.d02ejc.11

